LINEAKR SPACES OF TILINGS

Richard Kenyon (Brown University)




Rectangle tilings come in linear families (polytopes)
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Given such a polytope, one can make a random tiling by choosing a Lebesgue
random point

Thursday, May 12, 16



Smith diagram of a planar network [BSST 1939]
(with a harmonic function)
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vertex = horizontal line
voltage = y-coordinate
edge = rectangle
current = width

conductance = aspect ratio (width/height)
energy = area
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As we change conductances, the polytope can change:
the polytope is defined by direction of current flow in the network

These directions form a bipolar orientation of the network.

K,Abrams]
Thm: There is one fixed-area rectangulation for each bipolar orientation.
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K,Abrams]
Thm: There is one fixed-area rectangulation for each bipolar orientation.

The corresp. harmonic functions are the solutions of the enharmonic eqn:
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A random bipolar
orientation of a

random graph:

e dz? + e~ Mhdy? 7 :




T-graphs with fixed slopes come in linear families (polytopes)
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Polygons (or closed polygonal curves) with fixed edge slopes

Thurston:

Given a convex n-gon, the space of closed polygonal curves

with the same edge slopes is = R" 2.

On this space the signed area is a quadratic form of signature (1,n — 3).
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Proof by picture:
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For fixed area, there are two components to the space, called orientations:
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triangle quadrilateral pentagon
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Fixing area= 1, each component is isometric to H" 3.
The space of area-1 convex polygons is a convex polytope R = R(P) in H" ™3

“Butterfly moves” are hyperbolic isometries (reflections in the sides of R).

Shape of R depends on slopes of sides of P:
parallel sides of P implies side of R “at infinity”.
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Fix a tiling family (t-graph with fixed combinatorics and slopes)

Thm: For generic slopes, there is exactly one (generalized) tiling

for each choice of areas and tile orientations.
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For example, if we fix the areas, in this case there are 16 generalized tilings
(8 up to 180° rotation).
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Reality conjecture:
For rational slopes and areas, the Galois group permutes the solutions.
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Thm: For each choice of orientation, the set of possible areas (if nonempty)
is homeomorphic to a closed ball of dimension F'.

Proof: The map V¥ : {intercepts} — {areas} is a local homeomorphism

because DV is a Kasteleyn matrix for the underlying bipartite graph.
(which has dimer covers!)

Injectivity of ¥ follows from convexity: given two tilings with same areas

and same orientations, their average has greater area for each tile.
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Conclusion:
for rectangulations, polytopes <> bipolar orientations of network

for generic slopes, polytopes <> orientations (of white vertices)

(Q. what about intermediate cases?
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Many nontrivial facts can be proved using networks...

Q1. Can P be tiled with squares?
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Q2. Can () be tiled with rectangles of rational area?”

21/3

(1) -

N | —

91/3

N —

Thursday, May 12, 16



thank you for your attention!



